Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.353
Filtrar
1.
Food Microbiol ; 121: 104519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637081

RESUMEN

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Asunto(s)
Manosa , Salmonella typhimurium , Salmonella typhimurium/genética , Manosa/metabolismo , Spinacia oleracea , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética
2.
Microbiol Spectr ; 12(5): e0260623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530058

RESUMEN

Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.


Asunto(s)
Antibacterianos , Adhesión Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Adhesión Bacteriana/genética , Humanos , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Transcriptoma
3.
Gut Microbes ; 15(2): 2281011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38078655

RESUMEN

Gut bacteria provide benefits to the host and have been implicated in inflammatory bowel disease (IBD), where adherent-invasive E. coli (AIEC) pathobionts (e.g., strain LF82) are associated with Crohn's disease. E. coli-LF82 causes fragmentation of the epithelial mitochondrial network, leading to increased epithelial permeability. We hypothesized that butyrate would limit the epithelial mitochondrial disruption caused by E. coli-LF82. Human colonic organoids and the T84 epithelial cell line infected with E. coli-LF82 (MOI = 100, 4 h) showed a significant increase in mitochondrial network fission that was reduced by butyrate (10 mM) co-treatment. Butyrate reduced the loss of mitochondrial membrane potential caused by E. coli-LF82 and increased expression of PGC-1α mRNA, the master regulator of mitochondrial biogenesis. Metabolomics revealed that butyrate significantly altered E. coli-LF82 central carbon metabolism leading to diminished glucose uptake and increased succinate secretion. Correlating with preservation of mitochondrial network form/function, butyrate reduced E. coli-LF82 transcytosis across T84-cell monolayers. The use of the G-protein inhibitor, pertussis toxin, implicated GPCR signaling as critical to the effect of butyrate, and the free fatty acid receptor three (FFAR3, GPR41) agonist, AR420626, reproduced butyrate's effect in terms of ameliorating the loss of barrier function and reducing the mitochondrial fragmentation observed in E. coli-LF82 infected T84-cells and organoids. These data indicate that butyrate helps maintain epithelial mitochondrial form/function when challenged by E. coli-LF82 and that this occurs, at least in part, via FFAR3. Thus, loss of butyrate-producing bacteria in IBD in the context of pathobionts would contribute to loss of epithelial mitochondrial and barrier functions that could evoke disease and/or exaggerate a low-grade inflammation.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/microbiología , Ácidos Grasos no Esterificados/metabolismo , Butiratos/farmacología , Butiratos/metabolismo , Enfermedad de Crohn/microbiología , Adhesión Bacteriana/genética
4.
Front Cell Infect Microbiol ; 13: 1255083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881369

RESUMEN

Background: Adherent-invasive E. coli (AIEC) LF82 is capable of adhering to and invading intestinal epithelial cells, as well as replicating within macrophages without inducing host cell death. Methods: We compared the transcriptomics of LF82 at pH=7.5 and pH=5.8 by RNA-sequencing, and qRT-PCR verified differentially expressed genes (DEGs). The deletion mutants of DEGs in the treatment group (pH=5.8) compared to the control group (pH=7.5) were constructed by λ recombinant. The replication differences between the mutants and WT infected Raw 264.7 at 24 h.p.i were analyzed by combining LB solid plate count and confocal observation. NH4Cl and chloroquine diphosphate (CQ) were used for acid neutralization to study the effect of pH on the replication of LF82 in macrophages. Na2NO3 was added to RPMI 1640 to study the effect of nitrate on the replication of LF82 in macrophages. 0.3% solid LB was used for flagellar motility assay and Hela was used to study flagellar gene deletion mutants and WT adhesion and invasion ability. Results: In this study, we found that infection with LF82 results in acidification of macrophages. Subsequent experiments demonstrated that an intracellular acidic environment is necessary for LF82 replication. Transcriptome and phenotypic analysis showed that high expression of acid shock genes and acid fitness genes promotes LF82 replication in macrophages. Further, we found that the replication of LF82 in macrophages was increased under nitrate treatment, and nitrogen metabolism genes of LF82 were upregulated in acid treatment. The replication in macrophages of ΔnarK, ΔnarXL, ΔnarP, and Δhmp were decreased. In addition, we found that the expression of flagellar genes was downregulated in acidic pH and after LF82 invading macrophages. Motility assay shows that the movement of LF82 on an acidic semisolid agar plate was limited. Further results showed that ΔfliC and ΔfliD decreased in motility, adhesion ability, and invasion of host cells, but no significant effect on replication in macrophages was observed. Conclusion: In this study, we simulated the acidic environment in macrophages, combined with transcriptome technology, and explained from the genetic level that LF82 promotes replication by activating its acid shock and fitness system, enhancing nitrate utilization, and inhibiting flagellar function.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Nitratos/metabolismo , Macrófagos/metabolismo , Adhesión Bacteriana/genética , Mucosa Intestinal/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1228159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767199

RESUMEN

Introduction: Adherent-invasive Escherichia coli (AIEC) is strongly associated with the pathogenesis of Crohn's disease (CD). However, no molecular markers currently exist for AIEC identification. This study aimed to identify differentially expressed genes (DEGs) between AIEC and non-AIEC strains that may contribute to AIEC pathogenicity and to evaluate their utility as molecular markers. Methods: Comparative transcriptomics was performed on two closely related AIEC/non-AIEC strain pairs during Intestine-407 cell infection. DEGs were quantified by RT-qPCR in the same RNA extracts, as well as in 14 AIEC and 23 non-AIEC strains to validate the results across a diverse strain collection. Binary logistical regression was performed to identify DEGs whose quantification could be used as AIEC biomarkers. Results: Comparative transcriptomics revealed 67 differences in expression between the two phenotypes in the strain pairs, 50 of which (81.97%) were corroborated by RT-qPCR. When explored in the whole strain collection, 29 DEGs were differentially expressed between AIEC and non-AIEC phenotypes (p-value < 0.042), and 42 genes between the supernatant fraction of infected cell cultures and the cellular fraction containing adhered and intracellular bacteria (p-value < 0.049). Notably, six DEGs detected in the strain collection were implicated in arginine biosynthesis and five in colanic acid synthesis. Furthermore, two biomarkers based on wzb and cueR gene expression were proposed with an accuracy of ≥ 85% in our strain collection. Discussion: This is the first transcriptomic study conducted using AIEC-infected cell cultures. We have identified several genes that may be involved in AIEC pathogenicity, two of which are putative biomarkers for identification.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/microbiología , Adhesión Bacteriana/genética , Intestinos/patología , Fenotipo , Células Epiteliales/microbiología , Biomarcadores/metabolismo , Expresión Génica
6.
Front Cell Infect Microbiol ; 13: 1166158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424788

RESUMEN

Twenty-two atypical enteroaggregative Escherichia coli isolates from a previous epidemiological study harboring EAEC virulence genes were examined for their adhesion properties. Nine strains showed a typical aggregative adherence (AA) pattern, while 13 strains showed variant AA, such as AA with lined up cells characteristic of the chain-like adhesion (CLA) and AA mainly to HeLa cells characteristic of the diffuse adherence (DA). The aggregative forming pilus (AFP) genes afpA2 and afpR were detected only in strain Q015B, which exhibited an AA/DA pattern. Using Tn5-based transposon mutagenesis on Q015B strain, we identified a 5517-bp open reading frame (ORF) encoding a predicted 1838-amino-acid polypeptide that is genetically related to a putative filamentous hemagglutinin identified in E. coli strain 7-233-03_S3_C2. Therefore, the ORF was named orfHA. The regions flanking orfHA were sequenced and two ORFs were found; upstream, an ORF that encodes a 603-amino-acid polypeptide with 99% identity to hemolysin secretion/activation proteins of the ShlB/FhaC/HecB family, and downstream, another ORF, which encodes a 632-amino-acid polypeptide with 72% identity to the glycosyltransferase EtpC. An orfHA mutant (Q015BΔorfHA) was constructed from strain Q015B. Q015BΔorfHA strain did not adhere to HeLa cells, whereas Q015BΔ orfHA transformed with a pACYC184 plasmid carrying orfHA restored the AA/DA phenotype of strain Q015B. Furthermore, the Q015ΔorfHA mutant had a marked effect on the ability of strain Q015B to kill the larvae of Galleria mellonella. Our results suggest that the AA/DA pattern of strain Q015B is mediated by a hemagglutinin-associated protein which also contributes to its virulence in the G. mellonella model.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Hemaglutininas/metabolismo , Células HeLa , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulencia/genética , Adhesión Celular , Adhesión Bacteriana/genética , Infecciones por Escherichia coli/genética , Mutagénesis
7.
Microbiol Spectr ; 11(3): e0069023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039668

RESUMEN

Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/genética , Adhesión Bacteriana/genética , Adhesinas Bacterianas/genética , Adhesinas de Escherichia coli/genética , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/microbiología
8.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901788

RESUMEN

Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Adhesión Bacteriana/genética , Polimerizacion , Transactivadores/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica
9.
Vet Pathol ; 60(3): 336-340, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951102

RESUMEN

This case report describes a case of granulomatous colitis (GC) associated with adherent-invasive Escherichia coli (AIEC) with extension to cecum and ileum and dissemination to multiple lymph nodes, the spleen, and brain in a 10-year-old, male Sphynx cat. The cat had an episode of diarrhea 4 months prior to consultation due to sudden blindness. Signs rapidly progressed to ataxia, seizures, and death. Gross and histologic findings were consistent with granulomatous inflammation in all affected organs. In situ hybridization confirmed the presence of intracellular E. coli within enterocytes and infiltrating macrophages, and whole genome sequencing identified virulence traits commonly linked to AIEC strain. This is the first characterization of GC in a cat associated to AIEC resembling the metastatic form of Crohn's disease in humans and GC of dogs. Extraintestinal involvement might provide evidence of the ability of AIEC to promote granulomatous inflammation beyond the gut.


Asunto(s)
Enfermedad de Crohn , Enfermedades de los Perros , Infecciones por Escherichia coli , Humanos , Masculino , Animales , Perros , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/patología , Enfermedad de Crohn/veterinaria , Escherichia coli/genética , Infecciones por Escherichia coli/etiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/veterinaria , Mucosa Intestinal/patología , Inflamación/patología , Inflamación/veterinaria , Adhesión Bacteriana/genética , Enfermedades de los Perros/patología
10.
Biotechnol Appl Biochem ; 70(2): 688-696, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35932185

RESUMEN

The bacterium Caulobacter crescentus secretes an adhesive polysaccharide called holdfast, which is the known strongest underwater adhesive in nature. The deacetylase encoded by hfs (holdfast synthesis) H gene is a key factor affecting the adhesion of holdfast. Its structure and function are not yet clear, and whether other polysaccharide deacetylases exist in C. crescentus is still unknown. The screening of both HfsH and its structural analogue as well as their purification from the artificial expression products of Escherichia coli is the first step to clarify these questions. Here, we determined the conserved domains of HfsH via sequence alignment among carbohydrate esterase family 4 enzymes and screened out its structural analogue (CC_2574) in C. crescentus. The recombinant HfsH and CC_2574 were effectively expressed in E. coli. Both of them were purified by chromatography from their corresponding productions in E. coli and were then functionally analyzed. The results indicated that a high deacetylase activity (61.8 U/mg) was observed in recombinant HfsH but not in CC_2574, which suggesting that HfsH might be the irreplaceable gene mediating adhesion of holdfast in C. crescentus. Moreover, the divalent metal ions Zn2+ , Mg2+ , and Mn2+ could promote the activity of recombinant HfsH at the concentration from 0.05 to 1 mM, but inhibit its activity when the concentration exceeds 1 mM. In sum, our study first realized the artificial production of polysaccharide deacetylase HfsH and its structural analogue, and further explored their functions, both of which laid the foundation for the development of new adhesive materials.


Asunto(s)
Adhesión Bacteriana , Caulobacter crescentus , Adhesión Bacteriana/genética , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hormona Folículo Estimulante Humana/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/genética
11.
Front Cell Infect Microbiol ; 12: 997208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425788

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.


Asunto(s)
Adhesinas Bacterianas , Escherichia coli , alfa-Fetoproteínas , Niño , Humanos , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética , Biomarcadores , Diarrea/microbiología , Escherichia coli/genética , Células HeLa , Factores de Virulencia/genética
12.
FEMS Microbiol Lett ; 369(1)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36208952

RESUMEN

Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Infecciones por Escherichia coli , Enfermedades Inflamatorias del Intestino , Humanos , Escherichia coli/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Adhesión Bacteriana/genética , Enfermedad de Crohn/patología , Péptido Hidrolasas , Mucosa Intestinal
13.
PLoS Genet ; 18(10): e1010481, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315598

RESUMEN

Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.


Asunto(s)
Caulobacter crescentus , Caulobacter , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Caulobacter/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
Curr Opin Microbiol ; 70: 102206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36182819

RESUMEN

Crohn's disease (CD) is characterized by an imbalance of intestinal microbiota and a colonization of subepithelial tissues by pathogen and pathobiont bacteria. Adherent invasive Escherichia coli (AIEC) strains recovered from CD lesions survive and multiply within macrophages. Persistence is one of the mechanisms deployed by AIEC to tolerate macrophages' attack. The challenging intracellular environment induces a heterogeneity in AIEC LF82 phenotype, including the presence of nongrowing bacteria. This could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. In this article, we review the conditions leading to AIEC persistence, the relevance of this state for bacterial survival and disease's etiology, and its implication for therapeutic strategies.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/microbiología , Adhesión Bacteriana/genética , Infecciones por Escherichia coli/microbiología , Fagosomas , Bacterias/genética , Mucosa Intestinal/microbiología
15.
Gene ; 839: 146726, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35835408

RESUMEN

Bacteria adhesion to fish mucus is a crucial virulence mechanism. As the initial step of bacterial infection, adhesion is impacted by bacterial motility and environmental conditions. However, its molecular mechanism is yet unclear. In this study, a significant decrease in gene expression of adhesion-deficient Vibrio harveyi was observed when the bacteria were subjected by Cu2+(50 mg/L), Pb2+(100 mg/L), Hg2+(25 mg/L), and Zn2+(50 mg/L). The genes fliA, fliR, and flrB were responsible for flagellation; being crucial for adhesion, these genes were identified and silenced via RNAi. After silencing of these genes by RNAi technology, the ability of adhesion, biofilm formation, motility, and flagella synthesis of V. harveyi were considerably reduced. Compared with the control group, it was observed that the expression levels of fliS, fliD, flgH, and flrC were significant down-regulated in fliR-RNAi, flrB-RNAi, and fliA-RNAi. This data indicates that the expression levels of most virulence genes are affected by fliA, fliR, and flrB. Also, the expression of fliA, fliR, and flrB can be influenced by the salinity, temperature, and pH. The results show that: (1) fliA, fliR, and flrB have important roles in the adhesion of V. harveyi; (2) fliA, fliR, and flrB can regulate bacterial adhesion by affecting its motility, and biofilm formation; (3) fliA, fliR, and flrB can regulate adhesion ability of V. harveyi in different environments.


Asunto(s)
Adhesión Bacteriana , Vibrio , Animales , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vibrio/genética , Vibrio/metabolismo , Virulencia/genética
16.
Front Cell Infect Microbiol ; 12: 938477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899040

RESUMEN

There is increasing evidence showing that microbial dysbiosis impacts the health and cancer risk of the host. An association between adherent-invasive Escherichia coli (AIEC) and colorectal cancer (CRC) has been revealed. Cyclomodulins (CMs) have been receiving increasing attention for carcinogenic changes. In this study, the incidence and features of intracellular AIEC and cyclomodulin-encoding genes were investigated and the phylogenetic grouping and genetic relatedness were evaluated. E. coli strains were isolated from the colorectal biopsies. Adhesion and invasion assays and intramacrophage cell survival test were performed to separate the AIEC isolates. Virulence genotyping for the genes htrA, dsbA, chuA, and lpfA and the cyclomodulin toxins was also conducted. In addition, phylogenetic grouping of the isolates was determined. Subsequently, repetitive element sequence-based PCR (rep-PCR) fingerprinting was performed. A total of 24 AIEC pathovars were isolated from 150 patients. The prevalence rates of htr, dsbA, and lpfA were 70.83% and that of chuA was 91.66%. The frequencies of the cyclomodulin toxins were as follows: cnf1, 29.2%; cnf2, 25%; colibactin, 29.2%; and cdt, 4.2%; cif was not found. Among the AIEC isolates, 4.2%, 4.2%, 54.2%, 29.2%, and 8.3% with phylotypes A or C, B1, B2, D, and E were identified, respectively. Left-sided colon carcinoma and adenocarcinoma T≥1 stage (CRC2) were colonized by B2 phylogroup AIEC-producing CMs more often than the samples from the other groups. Close genetic relatedness was observed in AIEC isolates with rep-PCR.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Escherichia coli , Adhesión Bacteriana/genética , Escherichia coli , Infecciones por Escherichia coli/patología , Genotipo , Humanos , Irán/epidemiología , Filogenia
17.
Front Cell Infect Microbiol ; 12: 885191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35706909

RESUMEN

Typical enteroaggregative Escherichia coli (tEAEC) is a diarrheagenic E. coli pathotype associated with pediatric and traveler's diarrhea. Even without diarrhea, EAEC infections in children also lead to increased gut inflammation and growth shortfalls. EAEC strain's defining phenotype is the aggregative adherence pattern on epithelial cells attributable to the aggregative adherence fimbriae (AAF). EAEC only causes diarrhea in humans; therefore, not much is known of the exact intestinal region of infection and damage or its interactions with intestinal enterocytes in vivo and in situ. This study aimed to develop a new tEAEC mouse model of infection, characterize the microbiota of infected mice, and evaluate in situ the expression of host adherence and surface molecules triggering EAEC infection and the role of the EAEC AAF-II in adherence. Six-week-old C57BL/6 mice, without previous antibiotic treatment, were orally challenged with EAEC 042 strain or EAEC 042 AAF-II mutant (ΔAAF/II) strain, or DAEC-MXR strain (diffusely adherent E. coli clinical isolate), and with saline solution (control group). Paraffin sections of the colon and ileum were stained with H&E and periodic acid-Schiff. ZO-1, ß-catenin, MUC1, and bacteria were analyzed by immunofluorescence. EAEC-infected mice, in comparison with DAEC-MXR-infected and control mice, significantly lost weight during the first 3 days. After 7 days post-infection, mucus production was increased in the colon and ileum, ZO-1 localization remained unaltered, and morphological alterations were more pronounced in the ileum since increased expression and apical localization of ß-catenin in ileal enterocytes were observed. EAEC-infected mice developed dysbiosis 21 days post-infection. At 4 days post-infection, EAEC strain 042 formed a biofilm on ileal villi and increased the expression and apical localization of ß-catenin in ileal enterocytes; these effects were not seen in animals infected with the 042 ΔAAF/II strain. At 3 days post-infection, MUC1 expression on ileal enterocytes was mainly detectable among infected mice and colocalized with 042 strains on the enterocyte surface. We developed a novel mouse model of EAEC infection, which mimics human infection, not an illness, revealing that EAEC 042 exerts its pathogenic effects in the mouse ileum and causes dysbiosis. This model is a unique tool to unveil early molecular mechanisms of EAEC infection in vivo and in situ.


Asunto(s)
Infecciones por Escherichia coli , Íleon , Microbiota , Mucina-1 , beta Catenina , Adhesinas de Escherichia coli/genética , Animales , Adhesión Bacteriana/genética , Diarrea/microbiología , Modelos Animales de Enfermedad , Disbiosis , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Ratones , Ratones Endogámicos C57BL , Mucina-1/genética , Moco/metabolismo , Viaje , beta Catenina/genética
18.
Gene ; 833: 146610, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35609794

RESUMEN

Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.


Asunto(s)
Enterococcus faecalis , Infecciones Urinarias , Adhesión Bacteriana/genética , Pared Celular/genética , Pared Celular/metabolismo , Reparación del ADN , Enterococcus faecalis/genética , Humanos , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo
19.
PLoS Pathog ; 18(5): e1010511, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605029

RESUMEN

Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.


Asunto(s)
Adhesinas Bacterianas , Variación Antigénica , Antígenos Bacterianos , Proteínas Bacterianas , Borrelia burgdorferi , Lipoproteínas , Enfermedad de Lyme , Microvasos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Adhesión Bacteriana/genética , Adhesión Bacteriana/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Dermatán Sulfato/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Mamíferos , Ratones , Microvasos/inmunología , Microvasos/microbiología , Resistencia al Corte
20.
Sci Rep ; 12(1): 3003, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194033

RESUMEN

Bacterial kidney disease (BKD) is a chronic bacterial disease affecting both wild and farmed salmonids. The causative agent for BKD is the Gram-positive fish pathogen Renibacterium salmoninarum. As treatment and prevention of BKD have proven to be difficult, it is important to know and identify the key bacterial proteins that interact with the host. We used subcellular fractionation to report semi-quantitative data for the cytosolic, membrane, extracellular, and membrane vesicle (MV) proteome of R. salmoninarum. These data can aid as a backbone for more targeted experiments regarding the development of new drugs for the treatment of BKD. Further analysis was focused on the MV proteome, where both major immunosuppressive proteins P57/Msa and P22 and proteins involved in bacterial adhesion were found in high abundance. Interestingly, the P22 protein was relatively enriched only in the extracellular and MV fraction, implicating that MVs may play a role in host-pathogen interaction. Compared to the other subcellular fractions, the MVs were also relatively enriched in lipoproteins and all four cell wall hydrolases belonging to the New Lipoprotein C/Protein of 60 kDa (NlpC/P60) family were detected, suggesting an involvement in the formation of the MVs.


Asunto(s)
Vesículas Citoplasmáticas/fisiología , Proteoma/genética , Proteómica , Virulencia , Animales , Adhesión Bacteriana/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Vesículas Citoplasmáticas/metabolismo , Enfermedades de los Peces/microbiología , Peces/microbiología , Interacciones Huésped-Parásitos , Enfermedades Renales/microbiología , Enfermedades Renales/veterinaria , Lipoproteínas/metabolismo , Renibacterium/citología , Renibacterium/genética , Renibacterium/patogenicidad , Fracciones Subcelulares/fisiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA